[1] | A. D. White, “Frequency stabilization of gas lasers”, IEEE J. of Quantum Electronics 1 (8), 349 (1965), doi:10.1109/JQE.1965.1072246 |
[2] | T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity”, Opt. Commun. 35 (3), 441 (1980) (Hänsch–Couillaud technique), doi:10.1016/0030-4018(80)90069-3 |
[3] | R. W. P. Drever, J. L. Hall et al., “Laser phase and frequency stabilization using an optical resonator”, Appl. Phys. B 31, 97 (1983), doi:10.1007/BF00702605 |
[4] | G. C. Bjorklund et al., “Frequency-modulation (FM) spectroscopy”, Appl. Phys. B 32 (3), 145 (1983), doi:10.1007/BF00688820 |
[5] | C. Salomon et al., “Laser stabilization at the millihertz level”, J. Opt. Soc. Am. B 5 (8), 1576 (1988), doi:10.1364/JOSAB.5.001576 |
[6] | J. Dirscherl et al., “A dye laser spectrometer for high resolution spectroscopy”, Opt. Commun. 91, 131 (1992), doi:10.1016/0030-4018(92)90114-7 |
[7] | T. Day et al., “Sub-hertz relative frequency stabilization of two diode laser-pumped Nd:YAG lasers locked to a Fabry–Pérot interferometer”, IEEE J. Quantum Electron. 28 (4), 1106 (1992), doi:10.1109/3.135234 |
[8] | N. Uehara and K. I. Ueda, “193-mHz beat linewidth of frequency-stabilized laser-diode-pumped Nd:YAG ring lasers”, Opt. Lett. 18 (7), 505 (1993), doi:10.1364/OL.18.000505 |
[9] | C. C. Harb et al., “Suppression of the intensity noise in a diode-pumped neodymium:YAG nonplanar ring laser”, IEEE J. Quantum Electron. 30 (12), 2907 (1994), doi:10.1109/3.362718 |
[10] | S. Seel et al., “Cryogenic optical resonators: a new tool for laser frequency stabilization at the 1 Hz level”, Phys. Rev. Lett. 78 (25), 4741 (1997), doi:10.1103/PhysRevLett.78.4741 |
[11] | Y. Shevy and H. Deng, “Frequency-stable and ultranarrow-linewidth semiconductor laser locked directly to an atom-cesium transition”, Opt. Lett. 23 (6), 472 (1998), doi:10.1364/OL.23.000472 |
[12] | B. C. Young et al., “Visible lasers with subhertz linewidths”, Phys. Rev. Lett. 82 (19), 3799 (1999), doi:10.1103/PhysRevLett.82.3799 |
[13] | S. Kasapi et al., “Sub-shot-noise frequency-modulation spectroscopy by use of amplitude-squeezed light from semiconductor lasers”, J. Opt. Soc. Am. B 17 (2), 275 (2000), doi:10.1364/JOSAB.17.000275 |
[14] | E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization”, Am. J. Phys. 69 (1), 79 (2001), doi:10.1119/1.1286663 |
[15] | B. J. J. Slagmolen et al., “Frequency stability of spatial mode interference (tilt) locking”, IEEE Journal of Quantum Electronics 38 (11), 1521 (2002), doi:10.1109/JQE.2002.804267 |
[16] | F. W. Helbing et al., “Carrier–envelope offset phase-locking with attosecond timing jitter”, J. Sel. Top. Quantum Electron. 9 (4), 1030 (2003), doi:10.1109/JSTQE.2003.819104 |
[17] | St. A. Webster et al., “Subhertz-linewidth Nd:YAG laser”, Opt. Lett. 29 (13), 1497 (2004), doi:10.1364/OL.29.001497 |
[18] | J. Rollins et al., “Solid-state laser intensity stabilization at the 10−8 level”, Opt. Lett. 29 (16), 1876 (2004), doi:10.1364/OL.29.001876 |
[19] | H. Stoehr et al., “Diode laser with 1 Hz linewidth”, Opt. Lett. 31 (6), 736 (2006), doi:10.1364/OL.31.000736 |
[20] | F. Seifert et al., “Laser power stabilization for second-generation gravitational wave detectors”, Opt. Lett. 31 (13), 2000 (2006), doi:10.1364/OL.31.002000 |
[21] | F. Kéfélian et al., “Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line”, Opt. Lett. 34 (7), 914 (2009), doi:10.1364/OL.34.000914 |
[22] | P. Kwee et al., “Shot-noise-limited laser power stabilization with a high-power photodiode array”, Opt. Lett. 34 (19), 2912 (2009), doi:10.1364/OL.34.002912 |
[23] | N. Satyan et al., “Phase noise reduction of a semiconductor laser in a composite optical phase-locked loop”, Opt. Eng. 49 (12), 124301 (2010), doi:10.1117/1.3518077 |
[24] | Y. Zhao et al., “Sub-Hertz frequency stabilization of a commercial diode laser”, Opt. Commun. 283, 4696 (2010), doi:10.1016/j.optcom.2010.06.079 |
[25] | P. Kwee, B. Willke and K. Danzmann, “New concepts and results in laser power stabilization”, Appl. Phys. B 102 (3), 515 (2011), doi:10.1007/s00340-011-4399-1 |
[26] | M. Jing et al., “High bandwidth laser frequency locking for wideband noise suppression”, Opt. Express 29 (5), 7916 (2021), doi:10.1364/OE.419832 |
[27] | M. T. Nery et al., “Laser power stabilization via radiation pressure”, Opt. Lett. 46 (8), 1946 (2021), doi:10.1364/OL.422614 |
[28] | W. Jin et al., “Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators”, Nature Photonics 15, 346 (2021), doi:10.1038/s41566-021-00761-7 (correction: doi:10.1038/s41566-021-00805-y) |
[29] | N. Chabbra et al., “High stability laser locking to an optical cavity using tilt locking”, Opt. Lett. 46 (13), 3199 (2021), doi:10.1364/OL.427615 |
[30] | B. Li et al., “Reaching fiber-laser coherence in integrated photonics”, Opt. Lett. 46 (20), 5201 (2021), doi:10.1364/OL.439720 |
[31] | T. Cullen et al., “Passive laser power stabilization via an optical spring”, Opt. Lett. 47 (11), 2746 (2022), doi:10.1364/OL.456535 |
[32] | R. Paschotta, “Noise in Laser Technology”. Part 1 – Intensity and Phase Noise; Part 2: Fluctuations in Pulsed Lasers; Part 3: Beam Pointing Fluctuations |